
ECS-165A WQ’11 164

9. Transaction Processing Concepts

Goals: Understand the basic properties of a transaction and

learn the concepts underlying transaction processing as well as

the concurrent executions of transactions.

A transaction is a unit of a program execution that accesses and

possibly modifies various data objects (tuples, relations).

DBMS has to maintain the following properties of transactions:

• Atomicity: A transaction is an atomic unit of processing, and

it either has to be performed in its entirety or not at all.

• Consistency: A successful execution of a transaction must take

a consistent database state to a (new) consistent database

state. (; integrity constraints)

• Isolation: A transaction must not make its modifications

visible to other transactions until it is committed, i.e.,

each transaction is unaware of other transactions executing

concurrently in the system. (; concurrency control)

• Durability: Once a transaction has committed its changes,

these changes must never get lost due to subsequent (system)

failures. (; recovery)

Dept. of Computer Science UC Davis 9. Transaction Processing Concepts



ECS-165A WQ’11 165

Model used for representing database modifications of a

transaction:

• read(A,x): assign value of database object A to variable x;

• write(x,A): write value of variable x to database object A

Example of a Transaction T

read(A,x)

x := x - 200

write(x,A) Transaction Schedule reflects

read(B,y) chronological order of operations

y := y + 100

write(y,B)

Main focus here: Maintaining isolation in the presence of

multiple, concurrent user transactions

Goal: “Synchronization” of transactions; allowing concurrency

(instead of insisting on a strict serial transaction execution,

i.e., process complete T1, then T2, then T3 etc.)

; increase the throughput of the system,

; minimize response time for each transaction

Problems that can occur for certain transaction schedules without

appropriate concurrency control mechanisms:

Dept. of Computer Science UC Davis 9. Transaction Processing Concepts



ECS-165A WQ’11 166

Lost Update

Time Transaction T1 Transaction T2

1 read(A,x)

2 x:=x+200

3 read(A,y)

4 y:=y+100

5 write(x,A)

6 write(y,A)

7 commit
8 commit

The update performed by T1 gets lost; possible solution: T1

locks/unlocks database object A

=⇒ T2 cannot read A while A is modified by T1

Dirty Read

Time Transaction T1 Transaction T2

1 read(A,x)

2 x:=x+100

3 write(x,A)

4 read(A,y)

5 write(y,B)

6 rollback

T1 modifies db object, and then the transactionT1 fails for some

reason. Meanwhile the modified db object, however, has been

accessed by another transaction T2. Thus T2 has read data that

“never existed”.

Dept. of Computer Science UC Davis 9. Transaction Processing Concepts



ECS-165A WQ’11 167

Inconsistent Analysis (Incorrect Summary Problem)

Time Transaction T1 Transaction T2

1 read(A,y1)

2 read(A,x1)

3 x1 := x1 - 100

4 write(x1, A)

5 read(C,x2)

6 x2 := x2+x1

7 write(x2,C)

8 commit
9 read(B,y2)

10 read(C,y3)

11 sum := y1 + y2 + y3

12 commit

In this schedule, the total computed by T1 is wrong (off by 100).

=⇒ T1 must lock/unlock several db objects

Dept. of Computer Science UC Davis 9. Transaction Processing Concepts



ECS-165A WQ’11 168

Serializability

DBMS must control concurrent execution of transactions to

ensure read consistency, i.e., to avoid dirty reads etc.

; A (possibly concurrent) schedule S is serializable if it is

equivalent to a serial schedule S′, i.e., S has the same

result database state as S′.

How to ensure serializability of concurrent transactions?

Conflicts between operations of two transactions:

Ti Tj

read(A,x)
read(A,y)

Ti Tj

read(A,x)
write(y,A)

(order does not matter) (order matters)

Ti Tj

write(x,A)
read(A,y)

Ti Tj

write(x,A)
write(y,A)

(order matters) (order matters)

A schedule S is serializable with regard to the above conflicts iff
S can be transformed into a serial schedule S’ by a series of swaps

of non-conflicting operations.

Dept. of Computer Science UC Davis 9. Transaction Processing Concepts



ECS-165A WQ’11 169

Checks for serializability are based on precedence graph that

describes dependencies among concurrent transactions; if the

graph has no cycle, then the transactions are serializable.

; they can be executed concurrently without affecting each

others transaction result.

Concurrency Control: Lock-Based Protocols

• One way to ensure serializability is to require that accesses to

data objects must be done in a mutually exclusive manner.

• Allow transaction to access data object only if it is currently

holding a lock on that object.

• Serializability can be guaranteed using locks in a certain fashion

=⇒ Tests for serializability are redundant !

Types of locks that can be used in a transaction T:

• slock(X): shared-lock (read-lock); no other transaction than

T can write data object X, but they can read X

• xlock(X): exclusive-lock; T can read/write data object X; no

other transaction can read/write X, and

• unlock(X): unlock data object X

Dept. of Computer Science UC Davis 9. Transaction Processing Concepts



ECS-165A WQ’11 170

Lock-Compatibility Matrix:

requested existing lock

lock slock xlock

slock OK No

xlock No No

E.g., xlock(A) has to wait until all slock(A) have been released.

Using locks in a transaction (lock requirements, LR):

• before each read(X) there is either a xlock(X) or a slock(X)

and no unlock(X) in between

• before each write(X) there is a xlock(X) and no unlock(X)

in between

• a slock(X) can be tightened using a xlock(X)

• after a xlock(X) or a slock(X) sometime an unlock(X) must

occur

But: “Simply setting locks/unlocks is not sufficient”

replace each read(X)→ slock(X); read(X); unlock(X), and

write(X)→ xlock(X); write(X); unlock(X)

Dept. of Computer Science UC Davis 9. Transaction Processing Concepts



ECS-165A WQ’11 171

Two-Phase Locking Protocol (TPLP)

A transaction T satisfies the TPLP iff

• after the first unlock(X) no locks xlock(X) or slock(X) occur

• That is, first T obtains locks, but may not release any lock

(growing phase)

and then T may release locks, but may not obtain new locks

(shrinking phase)

Strict Two-Phase Locking Protocol:

All unlocks at the end of the transaction T =⇒ no dirty reads

are possible, i.e., no other transaction can write the (modified)

data objects in case of a rollback of T.

Concurrency Control in PostgreSQL

In PostgreSQL (or Oracle) the user can specify the following locks

on relations and tuples using the command

lock table in <mode> mode;

mode =̂ tuple level relation level

row share =̂ slock intended slock
row exclusive =̂ xlock intended xlock
share =̂ — slock
share row exclusive =̂ — sixlock
exclusive =̂ — xlock

Dept. of Computer Science UC Davis 9. Transaction Processing Concepts



ECS-165A WQ’11 172

The following locks are performed automatically by the scheduler:

select → no lock

insert/update/delete → xlock /row exclusive

select . . . for update → slock /row share

commit → releases all locks

PostgreSQL (and Oracle) furthermore provide isolation levels that

can be specified before a transaction by using the command

set transaction isolation level <level>;

• read committed (default): each query executed by a

transaction sees the data that was committed before the

query (not the transaction!)

(; statement level read consistency)

T1 T2

select A from R

→ old value

update R set A = new

select A from R

→ old value

commit

select A from R

→ new value

Non-repeatable reads (same select statement in TA gives

different results at different times) possible; dirty-reads are

not possible

Dept. of Computer Science UC Davis 9. Transaction Processing Concepts



ECS-165A WQ’11 173

• serializable: serializable TAs see only those changes that were

committed at the time the TA began, plus own changes.

PostgreSQL generates an error when such a transaction tries to

update or delete data modified by a transaction that commits

after the serializable transaction began.

T1 T2

set transaction isolation

level serializable

set transaction . . .

update R set A = new

where B = 1

commit

update R set A = new

where B = 1

→ ERROR

Dirty-reads and non-repeatable reads are not possible.

Furthermore, this mode guarantees serializability (but does

not provide much parallelism).

Dept. of Computer Science UC Davis 9. Transaction Processing Concepts


